KEYNOTE @ MBD MEETS RV WORKSHOP 2025 DIAGNOSIS MEETS VERIFICATION: THE PRINCIPLES, APPLICATION AND POTENTIAL OF MBD

Ingo Pill

who's talking?

- external lecturer at TU Graz
- until 2024 staff scientist @ Silicon Austria Labs, Graz, Austria
 - deputy head of 2 research units (-2023); trustworthy
 adaptive computing / collaborative perception & learning
 - management board "SAL Doctoral College"
- 2004 2020 (senior) scientist @ Graz Univ. of Tech., Austria
 - Institute of Software Engineering and AI (SAI, former IST)
 - still teaching at TU Graz
- 2023+ SC chair for "Int. Conference on Principles of Diagnosis and Resilient Systems"

background in AI – diagnosis / model-based diagnosis and reasoning, formal verification (temporal logics, automata, requirements eng.), testing, ...

"assistance in the design of intelligent and resilient systems"

what to expect?

- an introduction to model-based diagnosis
 - the why, what and how
- an example of applying MBD to formal models
 - Linear Temporal Logic (LTL)
- potentials and challenges in MBD research
 - design- and run-time

what is diagnosis and what is MBD?

the V&V problem ...

project manager: "which guarantees can ... car/phone/plant/..."
system operator: "I observed some weird/unexpected behavior, ..."
design engineer: "these verification results come unexpected"
automated system: "something went wrong, but what exactly? "

engineer / autonomous sys.: "is there a problem and where is it?"

verification: is there a problem ...

diagnosis: ... and where is it exactly

diagnosis ...

(early) diagnosis systems focused on encoding experience

- we can capture
 - (reversed) cause and effect chains
 - expert knowledge / rules of experience
- some "complex" computations done before diagnosis time
- hard to maintain all rules can change with system changes

competing idea

- let's use a system model instead
 - employ reasoning from first principles
 - foundations outlined in two seminal papers from '87

[A theory of diagnosis from first principles, Reiter '87] [Diagnosing multiple Faults, de Kleer and Williams '87]

MBD – the concept

employ reason from first principles

break down the complex problem (→ blocks) and reassemble

- we describe what we know about the system SD
- (2) we describe what we observed OBS
- (3a) and see whether there's a problem (OBS consistent with SD)
- (3b) find maximum sets of SD parts consistent with OBS: the complement must be faulty = this is a diagnosis

In the literature this concept is called MBD, consistency-based diagnosis, DX approach, ...

diagnoses offer explanations

the search for diagnoses resolves conflicts: what should be (SD) vs. what we saw (OBS)

- we use blocks in SD as basic truths / atoms
 - one health state h_i per block
 - If h_i is true, then the block is correct
 - SD: set of h_i → NominalBehavior(c_i)
 (+ some other stuff)

natural blocks: physical components, functions, statements, changes in a model, ...

Def: a diagnosis is a subset-minimal set Δ of h_i s.t. SD U OBS U $\{h_i \mid h_i \text{ not in } \Delta'\}$ is satisfiable

the search space is 2^{|H|}

SD vs. OBS

									outj	outs					
	i	nput	S	no	min	al		F_1			F_2			F_3	
test case	a	b	c	o_1	o_2	03	o_1	o_2	03	o_1	o_2	03	o_1	o_2	03
1 2 3 4	 	_ _ _ _ _ _	\perp \top \perp		 		⊥ ⊤ ⊤ ⊤	 				Т Т Т	 	 	Т Т Т
5 6 7 8	\bot \bot \top \top	_ _ _ _ _	T 		T T T	T T T		T T T			T T T	T T T	 	T T T	T T T

MBD – the traditional scenario

our knowledge about the assumed behaviour

System Description w. assumptions

MBD

[A theory of diagnosis from first principles, Reiter '87]
[Diagnosing multiple Faults, de Kleer and Williams '87]

Step 1: consistent / satisfiable? no → faulty!

Step 2: find diagnoses (in the assumptions)

"diagnoses" explain the observed behaviour

computation: two basic concepts

- directly in a solver (basically brute force)
 - iteratively search for a (new) solution
 - limit and increase fault cardinality
 - add blocking clauses for every ∆' found
 - at least one h in Δ' must be true (not faulty) for other Δs
- conflict-driven
 - conflicts between SD and OBS need to be resolved

computing diagnoses from conflicts

diagnostic search resolves conflicts in H:

- tree/DAG-like exploration
 - create candidates ∆'
 - (1) check if there's a "subset solution"
 - (2) see if there's a known conflict
 - (3) do consistency-check
 - SAT found a diagnosis!
 - UNSAT new conflict

node-labels are conflicts!

observation: a Diagnosis △ is a subset-minimal hitting set of conflicts in H

[A correction to the algorithm in Reiter's theory of diagnosis. Greiner, Smith, Wilkerson, 1989]

some algs. and a comparison

conflict-driven

[Diagnosing multiple Faults, de Kleer and Williams '87 (GDE)]
[RC-Tree: A Variant Avoiding all the Redundancy in Reiter's Minimal Hitting Set Algorithm,

I. Pill and T. Quaritsch, 2015]
[DynamicHS: Streamlining Reiter's Hitting-Set Tree for Sequential Diagnosis. P. Rodler, 2023]

direct

[ConDiag - Computing minimal diagnoses using a constraint solver, I Nica, F. Wotawa, 2012] [Compiling model-based diagnosis to Boolean satisfaction, A. Metodi, R. Stern, M. Kalech, and M. Codish, 2012]

comparison

[The Route to Success - A Performance Comparison of Diagnosis Algorithms, I. Nica, I. Pill, T. Quaritsch, F. Wotawa, 2013]
[Assessing Diagnosis Algorithms: Of Sampling, Baselines, Metrics and Oracles, I. Pill, J. de Kleer, DX 2025 (to appear), best paper award candidate]

and MBD?

- no restriction in terms of application
- we "only" need a model and a computation method to do the consistency checks
- can be, e.g., digital, logical, analog, mechanical, cyberphysical, biological, ecological, ethical, economical, and social systems and processes.

[Challenges for Model-based Diagnosis, I. Pill, J. de Kleer, 2024]

diagnosis is a common task ...

extracting a good coffee

- is a challenge
- requires knowledge
 - "expertise"
- there's no detailed model
 - general physics known
 - machine model?
 - environment?
 - coffee, water?
- data driven experimentation
 - external data points
 - unknown data quality

source: https://www.delonghi.com/de-at/ec685-m-dedica-espressomaschine/p/EC685.M

much more complex problems

picture sources: VoestAlpine, DLR, AMD, Magna International, Wikipedia, Waymo

from simple comb. circuits

simple circuit – introduce some fault(s)

F₁: gate g₁ like OR instead of AND

 F_2 : g_3 like OR

F₃: g₃ like XOR

				outputs											
	inputs			nominal			F_1			F_2			F_3		
test case	a	b	c	o_1	o_2	03	o_1	o_2	03	o_1	o_2	03	o_1	o_2	03
1		<u></u>	\perp	<u> </u>	<u></u>	1	<u>+</u>	<u>+</u>	\perp	<u></u>	<u>+</u>	<u></u>	<u></u>	<u></u>	<u></u>
2 3	 	<u> </u>	<u> </u>		+	<u> </u>	+	+	† †	<u></u>	+	+	<u> </u>	+	+
4	Т	Т	\perp	Т	T	Т	Т	Т	Т	Т	Т	Т	Т	Т	\perp
5	1	Τ	Т	Τ	Т	\perp		Т	\perp	Τ	Т	Т	1	Т	Т
6	上	Т	\perp	\perp	\perp	\perp	T	Τ.	\perp	\perp	Τ	\perp	\perp	\perp	丄
7	T	\perp	\perp		T		Τ	T	Т	\perp	T	Т	\perp	T	T
8	T	Τ	Τ	Т	T	T	Т	Т	T	Τ	Т	T	Τ	Т	1

MBD can explain the failing test cases via comparing

- OBS = observed I/O
- SD = clauses for gates

```
OR: o1 = a | b

(\neg h_1 \lor \neg o_1 \lor a \lor b),

(\neg h_1 \lor \neg a \lor o_1), (\neg h_1 \lor \neg b_1 \lor o_1)
```

 $h_1 \rightarrow NominalBehavior(g_1)$

to temporal logics & beyond

automated parking brake

R₁: always (block_wheels → stopped)

R₂: always (block_wheels → (block_wheels W (aps_enable → (drive v brake_pedal))))

[Behavioral Diagnosis of LTL Specifications at Operator Level, I. Pill, Th. Quaritsch, 2013] [Extending Automated FLTL Test Oracles With Diagnostic Support, I. Pill, F.Wotawa, 2019]

[Hybrid Systems Diagnosis, S. McIlraith, G. Biswas, D. Clancy, V. Gupta, HSCC 2000]

how about fault models?

weak fault model (WFM) – no assumption on faults

strong fault model (SFM)

alternative behavior

```
mode set {corr, mode<sub>1</sub>, ..., mode<sub>n-1</sub>} (e.g. twist operands for subformula \delta)
```

SD: mode → behavior_{mode}

 $h_i \rightarrow Id(n)$ bits \rightarrow add negated minterm to clauses add negated "unused" minterms to SD

[Diagnosis with Behavioral Modes, J. de Kleer and B. Williams, 1989]

what are the effects?

strong fault model diagnosis (SFM)

turns diagnosis into a configuration problem

 Δ = assignment for H that makes SD and OBS consistent supersets of a diagnosis are not a diagnosis by default diagnoses sometimes offer repairs (example will come)

search space grows from $2^{|H|}$ to $O(max(n)^{|H|})$

what if I have multiple scenarios?

- long-term observations
 - temporal behavior
 - multiple scenarios / plans
- results from a test suite
- observations from multiple system instances

this is different ...

explaining a scenario → characterizing a system

e.g. use combinatorial testing for circuits

								outputs								
	iı	nput	S	nominal			F_1			F_2			F_3			
test case	_	1.		_			_		_							
te	a	b	c	o_1	o_2	o_3	o_1	o_2	o_3	o_1	o_2	o_3	o_1	o_2	o_3	
1 2 3 4		Т Т Т		Т Т Т	Т Т Т				Т Т Т			Д Т Т				
5 6 7 8	<u> </u>	T T T	T		T			T T T		 	T T T	T T T		T T T	T	

[Exploiting Observations from Combinatorial Testing for Diagnostic Reasoning,

I. Pill and F. Wotawa, 2019]

multiple scenarios - how to?

- a multi-scenario diagnosis for a set T of failed test cases (failed scenarios) is a subset-minimal set Δ s.t.
 SD U OBS_i U { h_i | h_i not in Δ'} is satisfiable for each OBS_i
- all scenarios OBS_i are investigated in a global search space
 - global conflict buffer (try to use known conflicts first)

[Exploiting Observations from Combinatorial Testing for Diagnostic Reasoning,

I. Pill and F. Wotawa, 2019]

[Computing Multi-Scenario Diagnoses, I. Pill and F. Wotawa, 2020 (MSRC-Tree)] [Model-based diagnosis with multiple observations, A. Ignatiev et al., 2019]

multiple scenarios - how to?

- RC-Tree → MSRC-Tree
 - when checking diagnosis candidates, loop over scenarios
 - multiple strategies
- compute only a set of conflicts to describe global Δ s.t. $|\Delta| \leq$ bound I

Figure 2: Scatter plots comparing MSRC-Tree's average run-time (in 10^y seconds) against those of the naive algorithm and the linear MSRC-Tree variant (C17/C432/C499).

[Computing Multi-Scenario Diagnoses (MSRC-Tree), I. Pill and F. Wotawa, 2020] [Model-based diagnosis with multiple observations, A. Ignatiev et al., 2019]

Part II – an example: LTL

(2) Linear Temporal Logic

[Temporal Logic of Programs, Pnueli, 1977]

- we can describe programs and seq. circuits
 - specifications AND implementations
- clocked, discrete time steps
- initially for infinite computations
 - finite semantics as well (later)
 - contained e.g. in PSL (IEEE Std. 1850)
 - easy extension for further operators / purposes

MBD of LTL Descriptions

focus on operator occurrences in a formula ϕ did we use the right operator for subformula δ ?

system description SD with "assumptions" on ops

 $h_{\delta} \rightarrow NominalBehavior(\delta)$

observations OBS = trace values

SD U OBS U { $h_{\delta} \mid \delta$ in ϕ } inconsistent

→ faulty specification / LTL description

create a SAT encoding for MBD

SAT model for φ , τ

- basic ingredients:
 - encode operator semantics directly
 - add variables for all subformulae
 - temporal instantiation
- similar to encodings for model-checking, e.g.
 [Symbolic Model Checking without BDDs, Biere, Cimatti et al., 1999]
- structure-preserving CNF
- polynomial (linear growth with length of τ or spec)
- use with any diagnosis algorithm
 - HS-DAG / RC-Tree / direct ones

CNF encoding for LTL

"collect" clauses traversing the parse tree and τ for all t_i :

```
\varphi = a v b: unfolding rationale \varphi_i \leftrightarrow a_i v b<sub>i</sub>

3 clauses: (\neg \varphi_i \lor a_i \lor b_i), (\neg a_i \lor \varphi_i), (\neg b_i \lor \varphi_i)

\varphi = \delta \cup \psi (,,delta is true until psi becomes true")

rationales: clauses:
```



```
\begin{array}{lll} (f) & \varphi_{i} \rightarrow (\psi_{i} \vee (\delta_{i} \wedge \varphi_{i+1}) & \qquad & (f_{1}) & \neg \varphi_{i} \vee \psi_{i} \vee \delta_{i} & (f_{2}) & \neg \varphi_{i} \vee \psi_{i} \vee \varphi_{i+1} \\ (g) & \psi_{i} \rightarrow \varphi_{i} & \qquad & (g_{1}) & \neg \psi_{i} \vee \varphi_{i} \\ (h) & \delta_{i} \wedge \varphi_{i+1} \rightarrow \varphi_{i} & \qquad & (h_{1}) & \neg \delta_{i} \vee \neg \varphi_{i+1} \vee \varphi_{i} \\ (i) & \varphi_{k} \rightarrow (\psi_{l} \vee \dots \vee \psi_{k}) & \qquad & (i_{1}) & \neg \varphi_{k} \vee \psi_{l} \vee \dots \vee \psi_{k} \end{array}
```

for MBD: just add $\neg h_{\delta}$ to each clause of operator δ ($h_{\delta} \rightarrow SD_{\delta}$)

some example: arbiter

R1: "any request granted eventually"

R2: "no simultaneous grants"

R3: "no initial spurious grants"

R4: "no further grants until new request"


```
R4 in LTL: G(g_i \rightarrow X(\neg g_i \cup r_i))
globally(g_i \rightarrow next((not g_i) until r_i))
```

[Formal Analysis of Hardw. Requirements, I. Pill, A. Cimatti et al., 2006]

Λ

arbiter example: (WFM) diagnoses

R1: "any request granted eventually"

R2: "no simultaneous grants"

R3: "no initial spurious grants"

R4: "no further grants until new request"

 $G(g_i \rightarrow X(\neg g_i \cup r_i))$

you said SFM can offer repairs ...

other Boolean operator

other temporal operator

twist operands

R4:
$$G(g_1 \rightarrow X (\neg g_1 \cup r_1))$$

1:
$$G(g_1 \rightarrow X (\neg g_1 \lor r_1))$$

2:
$$X(g_1 \rightarrow X (\neg g_1 \cup r_1))$$

3:
$$G(g_1 \rightarrow X (r_1 R \neg g_1)$$

4:
$$G(g_1 \rightarrow X (\neg g_1 \cup r_2))$$

5:
$$G(g_1 \rightarrow F (\neg g_1 \cup r_1))$$

6:
$$F(g_1 \rightarrow X (\neg g_1 \cup r_1))$$

7:
$$G(g_1 \rightarrow X (r_1 \cup \neg g_1))$$

8:
$$G(g_1 \rightarrow X (\neg g_1 \cup g_2))$$

9:
$$G(g_1 \rightarrow X (r_1 W \neg g_1))$$

you mentioned finite semantics

- infinite examples come from model-checkers, documents, tools like RAT ...
- testing and RV give you finite examples though
 - finite LTL semantics are slightly different (e.g. X)
 - encoding for diagnosis and oracle
 - oracle needs Boolean propagation only

[Extending Automated FLTL Test Oracles With Diagnostic Support, I. Pill, F.Wotawa, IDEAR@ISSRE'19]

[Automated generation of (F)LTL oracles for testing and debugging, I. Pill, Franz Wotawa, J. of Systems and Software, Volume 139]

Part III – challenges and potentials

MBD is

- good at explaining diagnoses offer justified explanations
- sound a computed solution is correct
- complete we can find the entire set of solutions
- intuitive, flexible (algorithms, domain)
- sometimes offers repairs (SFM of spec or design)

depends on a "white-box" model + engine

sometimes ...

- ... reasoning with MBD is not fast enough
- think about a resilient agent
 - but do we need (all) explanations then?
 - reliability of actions might suffice as first info
 - focus on reliable actions in the planning
 - use SFL to derive reliability of individual actions
 - use that in the (re-)planning

Resilience is the intrinsic ability of a system to sustain its required operations when impacted by expected and unexpected contingencies that were potentially not considered at design time

that is, in an ideal world ...

- a resilient system reasons about options and decide
- we have a lot of resources to reason about options
 - derive the most promising/efficient action sequences
 - perceive, diagnose, reason + act
 - no Markov property restrictions (history is relevant)

... and then we would do ...

Novelty detection

[Model-based Novelty Detection for Open-World Al M. Klenk, W. Piotrowski, R. Stern, S. Mohan, and J. de Kleer, DX Workshop 2020]

Fusing Diagnosis and Prognosis

[System Resilience through Health Monitoring and Reconfiguration,

I. Matei, W. Piotrowski, A Perez, J. de Kleer, J. Tierno, W. Mungowan, V. Turnewitsch, ACM Trans. on Cyber-Phys. Sys., 2024

in the real world ...

limited resources, but still need to make informed decisions

- approximate a real decision via a "reaction"-policy
- do reasoning, but have to improve runtime performance/resources
 - scale down single steps / concept

[Drawing on SFL for Making Intelligent Decisions in RBL, M. Zimmermann, I. Pill, F. Wotawa, DX Workshop 2020]

computation times are not the only challenge for MBD

[Challenges for Model-based Diagnosis, I. Pill, J. de Kleer, DX conference 2024]

failure of function vs. components

- a human considers the observed problem
 - exploits common sense reasoning and expertise
 - at various abstraction levels
 - hierarchical view / "divide et impera"
- how to capture this in MBD models / algorithms?
 - dependency graphs / dependent failure descriptions
 - learn and maintain abstract representations

models are approximations

- MBD is often sound and complete w.r.t. the model
 - not everything is modeled (e.g., radiation)
 - capacitors might get heated by resistors
 - hidden assumptions/simplifications might change
- currently we have no means to
 - assess an MBD model and its consequences
 - express confidence in the model and its consequences

component degradation

- WFM theory considers a component healthy/unhealthy
- fault models capture problematic behavior only
- we can't capture degradation
 - how well does a system still work?

- the PHM community has models, but incompatible with MBD
- for monitoring and logics like STL, a notion was introduced

Topic: Resilient Autonomy Supported by Continuous Tracking of Component Degradation via Model-Based Diagnosis

considering synergies and levels

- many systems are massively replicated
 - cars, screws, copiers, mobile phones, ...
 - inefficient to rediscover faults (design, ...)
 - problem in a plane/drone instant report in the fleet
 - use data from other copies for discrimination
 - is the problem local in time/space/system/...?
 - collaborating robots more knowledge
 - exploit digital twins
- different levels of time and scope
 - immediate/intermediate/LT

please take home that

there's a huge potential for research in combining RV and MBD for driving the resilient systems of tomorrow ...

[Challenges for Model-based Diagnosis, I. Pill, J. de Kleer, DX conference 2024]

get in touch ingo.pill@gmail.com

If this was interesting to you, consider joining us at the next International Conference on Principles of Diagnosis and Resilient Systems